The present investigation studied the lab-to-field generalizability of Fishbein's attitude-behavior model and examined the relative efficacy of the Fishbein model and traditional job attitude measures as predictors of absenteeism and turnover. Predictor data were collected from 108 nursing home employees immediately preceding the two-month time period of interest. Criterion data were obtained at the end of the two-month period. Fishbein's model received some field support, particularly with respect to predicting turnover. Traditional job attitude measures were more effective predictors of absenteeism, while Fishbein's model was a more effective predictor of turnover. It was concluded that neither approach seems superior especially in light of the amounts of criterion variance accounted for.

Empirical studies of the attitude-behavior relationship in specific reference to job attitudes and job withdrawal behaviors have been reviewed recently by Porter and Steers (1973). They concluded that there is considerable evidence for consistent negative relationships between job attitudes (i.e., job satisfaction) and turnover. There appears to be a similar relationship of job attitudes to absenteeism, although there is much less information available. Porter and Steers note that many of the more recent findings are based on reliable and valid measures of job attitudes such as the Job Descriptive Index, JDI, (Smith, Kendall, & Hulin, 1969).

Although these observed attitude-behavior relationships are relatively consistent, they are seldom overly strong. Obtained correlations or multiple correlations as high as .50 have been rare. Since the prediction of job withdrawal behavior is a critical research topic from both theoretical and applied perspectives, it is important to further specify the precise nature of the relationship between attitudinal measures and withdrawal behavior and to test these models in applied settings.

Fishbein (1967) has developed a model for predicting overt behavior from verbal predictors. Fishbein's theory is an adaptation of Dulany's (1961, 1962) theory of propositional control and a variation of the extended instrumentality theories of behavior (Mitchell & Biglan, 1971).

The theory identifies two kinds of variables that function as the basic determinants of behavior: (a) attitudes toward the behavior and (b) normative beliefs. The first component, attitudes toward the behavior, reflects the instrumentality concept and depends upon the individual's beliefs about the consequences of performing the particular behavior in a given situation and his evaluation of these consequences. The second component, normative beliefs, depends upon the individual's beliefs regarding others' expectations of his behavior and his motivation to comply with these expectations. Fishbein acknowledges that other variables may affect behavior, but suggests that they operate indirectly by influencing one of the above determinants.

Fishbein's theoretical formulation may be expressed in symbolic form as a multiple regression equation:

\[B = BI = \left(A_{act} \right) w_0 + \left(NB_a \cdot MC \right) w_1 \]

Where:

- \(B \) = overt behavior
- \(BI \) = behavioral intention

1 The author wishes to thank Martin Fishbein, Charles Hulin, and the reviewers for their valuable comments on an earlier draft of this article.

Requests for reprints should be sent to John Newman who is now at One State Farm Plaza, State Farm Insurance Companies, Bloomington, Illinois 61701.
Predicting Absenteeism and Turnover: Fishbein Model

\[A_{act} = \text{attitude toward the behavior in a given situation} \]

\[NB_s = \text{social normative beliefs, i.e., perceived expectations of others} \]

\[MC = \text{motivation to comply with the normative beliefs} \]

\[w_0w_1 = \text{empirically determined weights.} \]

It is important to note that the criterion predicted by the components of this model is the individual's behavioral intention (BI). Ajzen and Fishbein (1969) have stated that BI serves as an intervening variable between the attitudinal and normative predictors and the overt behavior. They believe that the best predictor of a given behavior should be the person's intention to engage in that behavior. According to the theory then, if one can predict BI, one can also predict B with only slight attenuation.

The results of more than nine laboratory studies have indicated that the average correlation between BI and a wide range of behaviors is about .70 (Fishbein, in press). These same studies have indicated that the average multiple correlation between the two components of Fishbein's model and behavioral intentions is about .80 (Fishbein, in press). The model, however, has not been tested in on-going work organizations, and the usefulness of the theory for organizational situations is unknown.

The purpose of this study then was to test Fishbein's model in a real organizational setting. In addition to exploring the generalizability of the model from the laboratory to the field, the relative efficacy of the Fishbein model and traditional job satisfaction measures as predictors of job withdrawal behavior was examined.

Method

Subjects and Research Setting

The subjects \((N = 108)\) were employees of a county nursing home and included nurse's aides, licensed practical nurses, registered nurses, administrators, staff, food service and housekeeping personnel. Slightly over 88% were female.

Questionnaire

The questionnaire provided measures of the following variables:

1. BI with respect to unexcused absences was measured in the following manner:

 "I am going to be absent (unexcused) from work on one or more days within the next two months (July and August)."

<table>
<thead>
<tr>
<th>EXTREMELY LIKELY</th>
<th>QUITE LIKELY</th>
<th>SLIGHTLY LIKELY</th>
<th>NEITHER LIKELY</th>
<th>SLIGHTLY UNLIKELY</th>
<th>QUITE UNLIKELY</th>
<th>EXTREMELY UNLIKELY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR UNLIKELY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 This scale was scored from 1 (extremely unlikely) through 7 (extremely likely).

2. Attitude toward being absent \((A_{ot})\) was measured by taking the sum over the following four semantic differential scales with high loadings on the evaluative factor (cf. Osgood, Suci, & Tannenbaum, 1957):

 "Being absent (unexcused) from work on one or more days within the next two months (July and August) is:

 Each scale was scored 1 through 7, 7 representing the positive end of the continuum.

3. NB, with respect to unexcused absenteeism was measured by the following scale. Responses were scored from 1 (extremely unlikely) through 7 (extremely likely). Note that the phrase "whose opinions I respect" is an attempt to incorporate motivation-to-comply into this measure.

 Most of the people, whose opinions I respect, think I should be absent (unexcused) from work on one or more days within the next two months (July and August).
4. BI, A_{act}, NB_s with respect to voluntary resignation were also measured according to the above three formats.

5. Attitude toward the job in general was measured by the General Motors Faces scale (Kunin, 1955). This was scored from 1 (very dissatisfied) through 5 (very satisfied). It incorporated five faces (numbers 1, 4, 6, 8, 11) of the original scale.

6. Attitudes toward specific aspects of the employee's job situation (A_s) were measured by the five scales of the Job Descriptive Index (JDI) (Smith, Kendall, & Hulin, 1969). These scales measure the employee's satisfaction with the work, supervision, promotion, pay, and co-workers.

Procedure

The predictor data were obtained from the participants in the field setting. In an effort to minimize the reactive nature of the study, the questionnaire was administered to small groups of employees. When the employee entered the questionnaire-administration room, he signed a numbered attendance roster and was given, unobtrusively as possible, a questionnaire with a corresponding number. This allowed matching of the questionnaire data with absenteeism and resignation data.

The general nature of the study was explained briefly, the participants were guaranteed confidentiality, informed it was not necessary to sign the questionnaire, and then asked to complete the questionnaire. The data collection occurred during each of the three work shifts on the two days immediately preceding the two-month time period of interest.

Data relevant to the behavioral criteria, unexcused absenteeism (a single dichotomous act criterion) and voluntary resignation (also a single dichotomous act criterion) were obtained from the organization's records at the end of the two-month period. Absenteeism was scored as 0 or 1 depending on whether the employee was (1) or was not (0) absent (unexcused) at all during the two-month period. It is very important to understand that we were predicting whether or not the employee would be absent, not frequency of absences as a continuous variable. Voluntary resignation was scored as 0 or 1 depending on whether the employee voluntarily resigned (1) or not (0) during the two-month period.

Results

Fishbein's Model: Lab versus Field

The means, standard deviations, and intercorrelations of all predictors and both criteria are presented in Table 1. From Table 1 it can be seen that BI correlated .10 and .39 with absenteeism and resignation, respectively. Although the .39 correlation was significant ($p < .01$), it was substantially smaller than BI−B correlations ($r = .70$) obtained in the laboratory studies mentioned earlier.

The Fishbein model was designed specifically to predict behavioral intentions. The multiple correlations between the respective attitudinal and normative components of the model and the intent to be absent ($R = .45, p < .01$) and with the intent to resign ($R = .70, p < .01$) indicate that Fishbein's model is a relatively effective predictor of behavioral intention. Both of these multiple correlations, however, were lower than those ($r = .80$) obtained in the laboratory studies.

In summary, although the Fishbein model yielded several significant correlations, the amounts of variance in overt behaviors and in behavioral intentions accountable by the Fishbein model in this field test were substantially lower than those accountable by the model in laboratory situations (Table 1).

Predictive Power: Comparison of the Fishbein Model and the Traditional Job Attitude Measures

Absenteeism. BI correlated .10 with absenteeism (Table 1). A_{act} and NB_s had a multiple correlation of .12 with absenteeism (Table 2). Thus, Fishbein's model accounted for (or predicted) about 1% of the variance in this withdrawal behavior.

Examination of Table 1 indicates that a traditional measure of satisfaction with the work itself (JDI Work scale) correlated significantly with absenteeism ($r = -.19$). This correlation coefficient was larger than any achieved by Fishbein's variables. However, the best single predictor of absenteeism was satisfaction with the job-in-general (Faces scale, $r = -.31$), accounting for roughly 9% of the criterion variance.
<table>
<thead>
<tr>
<th>Measure</th>
<th>X</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absenteeism</td>
<td></td>
</tr>
<tr>
<td>1. A<sub>act</sub></td>
<td>6.9</td>
<td>3.8</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2. NB<sub>S</sub></td>
<td>1.8</td>
<td>1.2</td>
<td>.36</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>3. BI</td>
<td>1.6</td>
<td>1.3</td>
<td>.36</td>
<td>.38</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>4. B</td>
<td>.1</td>
<td>.3</td>
<td>.02</td>
<td>.12</td>
<td>.10</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Voluntary resignation</td>
<td></td>
</tr>
<tr>
<td>5. A<sub>act</sub></td>
<td>10.3</td>
<td>7.0</td>
<td>.48</td>
<td>.27</td>
<td>.25</td>
<td>-.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. NB<sub>S</sub></td>
<td>2.0</td>
<td>1.6</td>
<td>.32</td>
<td>.40</td>
<td>.17</td>
<td>.16</td>
<td>.49</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. BI</td>
<td>2.1</td>
<td>1.8</td>
<td>.38</td>
<td>.36</td>
<td>.35</td>
<td>.06</td>
<td>.66</td>
<td>.53</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. B</td>
<td>.1</td>
<td>.3</td>
<td>.17</td>
<td>.24</td>
<td>.18</td>
<td>.23</td>
<td>.30</td>
<td>.32</td>
<td>.39</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JDI scales</td>
<td></td>
</tr>
<tr>
<td>9. Work</td>
<td>31.6</td>
<td>9.6</td>
<td>-.33</td>
<td>-.32</td>
<td>-.23</td>
<td>-.19</td>
<td>-.16</td>
<td>-.18</td>
<td>-.12</td>
<td>-.07</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Pay</td>
<td>9.8</td>
<td>6.5</td>
<td>-.03</td>
<td>-.05</td>
<td>.07</td>
<td>-.04</td>
<td>-.21</td>
<td>-.17</td>
<td>-.10</td>
<td>-.14</td>
<td>.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Promotion</td>
<td>10.8</td>
<td>7.5</td>
<td>-.15</td>
<td>-.05</td>
<td>-.06</td>
<td>-.10</td>
<td>-.11</td>
<td>-.20</td>
<td>-.09</td>
<td>-.04</td>
<td>.27</td>
<td>.31</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Supervision</td>
<td>44.0</td>
<td>9.1</td>
<td>-.18</td>
<td>-.06</td>
<td>-.05</td>
<td>.13</td>
<td>-.21</td>
<td>.05</td>
<td>-.06</td>
<td>.04</td>
<td>.24</td>
<td>.23</td>
<td>.07</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Co-workers</td>
<td>40.7</td>
<td>10.7</td>
<td>-.07</td>
<td>.05</td>
<td>-.01</td>
<td>-.11</td>
<td>-.13</td>
<td>-.22</td>
<td>-.05</td>
<td>.05</td>
<td>.35</td>
<td>.27</td>
<td>.15</td>
<td>.12</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Overall job satisfaction</td>
<td>4.0</td>
<td>.9</td>
<td>-.13</td>
<td>-.13</td>
<td>-.18</td>
<td>-.31</td>
<td>-.09</td>
<td>-.11</td>
<td>-.10</td>
<td>-.16</td>
<td>.62</td>
<td>.26</td>
<td>.41</td>
<td>.15</td>
<td>.36</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note. $r > .22, p < .01; r > .16, p < .05$. $A_{act} =$ attitude toward the behavior in a given situation; $NB_{S} =$ social normative beliefs, i.e., perceived expectations of others; $BI =$ behavioral intention; $B =$ overt behavior; JDI = Job Descriptive Index.
It should be noted that scores on the JDI scales were also summed (unweighted) to yield another index of overall job satisfaction. This index correlated —.10 with absenteeism.

The predictive power of combinations of the traditional measures was also examined (Table 2). The multiple correlation of the five JDI scales with absenteeism was .27 (ns). Adding the Faces scale to the preceding five predictors increased the multiple correlation to .36 (p < .05). This combination of traditional job attitude measures turned out to be the best predictor of absenteeism, accounting for 13% of the variance.

These data suggest that the traditional job attitude measures were relatively more efficacious in predicting absenteeism. Although predictor-criterion correlations of this magnitude are useful to the practitioner, this level of predictive power (i.e., amount of criterion variance accounted for) leaves much to be desired.

An exploratory attempt to increase the predictive power by combining the traditional measures and Fishbein’s components yielded a multiple correlation of .37, not significantly better than the combination of just traditional measures (Table 2).

Resignation. BI correlated .39 (p < .01) with voluntary resignation (Table 1). A_{act} and NB_a had a multiple correlation of .36 (p < .01) with resignation (Table 2). Thus, Fishbein’s model accounted for (or predicted) about 13% of the variance in this job withdrawal behavior (Table 2).

Table 1 indicates that of the single traditional job attitude measures, only overall job satisfaction (Faces scale) had a significant correlation (r = -.16, p < .05) with voluntary resignation. The derived measure of overall job satisfaction (i.e., unweighted sum of the five JDI scales) correlated —.04 with resignation. The correlation (r = -.14) between satisfaction with pay (JDI Pay scale) and resignation was not quite significant at the .05 level (Table 1). The rest of the traditional measures had near zero correlations with resignation (Table 1). Thus, the best single traditional measure accounted for approximately 3% of the criterion variance.

Combinations of the traditional measures were only slightly more predictive (Table 2). The multiple correlation of the five JDI scales with resignation was .21 (ns). This latter combination accounted for approximately 7% of the criterion variance.

Again, an exploratory attempt was made to increase the predictive power by combining the traditional measures and Fishbein’s measures. This resulted in a multiple correlation of .48 (p < .01) when BI was included (Table 2). This eclectic combination accounted for 23% of the variance in voluntary resignation.

These data suggest that Fishbein’s model was relatively more effective in predicting voluntary resignation. Any conclusions about

<table>
<thead>
<tr>
<th>Measure</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absenteeism</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>A<sub>act</sub> and NB<sub>a</sub></td>
<td>.12 (.03)</td>
</tr>
<tr>
<td>5 JDI scales</td>
<td>.27 (.17)</td>
</tr>
<tr>
<td>5 JDI scales and Faces</td>
<td>.36* (.30)</td>
</tr>
<tr>
<td>5 JDI scales, Faces, A<sub>act</sub>, NB<sub>a</sub></td>
<td>.37 (.28)</td>
</tr>
<tr>
<td>5 JDI scales, Faces, A<sub>act</sub>, NB<sub>a</sub>, BI</td>
<td>.37 (.27)</td>
</tr>
</tbody>
</table>

Note. One must be careful about the interpretation of the multiple Rs since they are not cross-validated. For inferential purposes, the values in parentheses have been corrected for “shrinkage” by the Wherry formula. A_{act} = attitude toward the behavior in a given situation; NB_a = social normative beliefs, i.e., perceived expectations of others; BI = behavioral intention; JDI = Job Descriptive Index.

* p < .05.
** p < .01.
the usefulness and power of either approach, however, must be tempered by a consideration of the amount of criterion variance accounted for.

DISCUSSION

The present study indicated that neither job attitudes nor behavioral intentions were consistently superior in accounting for job withdrawal behaviors. Also, Fishbein’s model accounted for less behavioral variance in this field situation than in the prior laboratory studies. Although more field tests are necessary, the present findings reaffirm the view of the prediction of behavior in real organizational settings as a complex situation with many uncontrolled, unaccounted for contributors to criterion variance.

Future attempts to come to grips with this complexity should incorporate more facets of personal and situational information in a comprehensive, but integrated, prediction system. Such an approach is outlined in Newman (1974).

Future research should aim toward further specification of the circumstances under which stronger relationships might be evident. For example, the degree of control the person has over the criterion behavior would appear to be a very important boundary condition. The relationship of attitudes and intentions to behavior is likely constrained to the extent that the person lacks control over the behavior. This may be a partial explanation for the present results in that the study was conducted during a time when the cost of living was high and the labor market tight. Thus, having no better alternatives, many employees had no real choice concerning job withdrawal, perhaps.

Closely related to the problem of lack of control in the field situation and to the degree of control the person has over the behavior of interest, is the fact that employees live in a dynamic world. Thus, a most difficult phenomenon to cope with (let alone control) in predictive, field studies is the change in value of the predictor variables during the time period following their measurement.

If visions of causal relationships dance through our heads when we interpret predictive attitude–behavior correlations, then it is also necessary to entertain the assumption that the attitude (or behavioral intention) remains constant during the intervening time period. Future investigators should test this assumption by closely monitoring the attitude of interest over several points in time prior to obtaining the criterion measure and even at the time of obtaining the criterion measure.

This procedure would also allow examination of the relationship between change (per se) in attitude and the criterion behavior and the relationships of magnitude, rate, and direction of attitudinal change to behavior. These relationships may be stronger and thus more predictive of absenteeism and turnover, for example, than the typical attitude-measured-at-one-time-behavior relationship pursued today.

REFERENCES

(Received October 15, 1973)