Shorter can Also be Better: The Abridged Job in General Scale
Steven S. Russell, Christiane Spitzmüller, Lilly F. Lin, Jeffrey M. Stanton, Patricia C. Smith and Gail H. Ironson
Educational and Psychological Measurement 2004; 64; 878
DOI: 10.1177/0013164404264841

The online version of this article can be found at:
http://epm.sagepub.com/cgi/content/abstract/64/5/878

Published by:
SAGE Publications
http://www.sagepublications.com

Additional services and information for Educational and Psychological Measurement can be found at:

Email Alerts: http://epm.sagepub.com/cgi/alerts

Subscriptions: http://epm.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations (this article cites 30 articles hosted on the SAGE Journals Online and HighWire Press platforms):
http://epm.sagepub.com/cgi/content/abstract/64/5/878#BIBL
SHORTER CAN ALSO BE BETTER:
The ABRIDGED JOB IN GENERAL SCALE

STEVEN S. RUSSELL
Bowling Green State University

CHRISTIANE SPITZMÜLLER
University of Houston

LILLY F. LIN
Bowling Green State University

JEFFREY M. STANTON
Syracuse University

PATRICIA C. SMITH
Bowling Green State University

GAIL H. IRONSON
University of Miami

The Job Descriptive Index family of job attitude measures includes the Job in General (JIG) scale, a measure of global satisfaction with one’s job. The scale was originally developed and validated by Ironson, Smith, Brannick, Gibson, and Paul. Following structured scale reduction procedures developed by Stanton, Sinar, Balzer, and Smith, the current authors developed an abridged version of the JIG for use by practitioners and researchers of organizational behavior. They report the results of three validation studies documenting the process of scale reduction and the psychometric suitability of the reduced-length scale.

Keywords: job satisfaction; test validity; test construction; scale reduction
Modern theories of organizational behavior presume a symbiotic, bonding relationship between workers and workplaces, such that the thoughts and behaviors of people influence the organizations in which they work, and vice versa (Brief & Weiss, 2002; Mathieu & Zajac, 1990). Among the most salient elements of this relationship are workers’ job attitudes and job satisfaction in particular. Job satisfaction has been researched as antecedent, correlate, and consequence of virtually all organizationally relevant outcomes (e.g., job performance; Judge, Thoreson, Bono, & Patton, 2001). Its reliable and valid measurement allows practitioners and researchers to detect organizational problems, evaluate the effectiveness of interventions, and test hypotheses relating to the construct’s role in theory (Balzer et al., 1997).

The two most common methods of assessing job satisfaction in organizations are the use of facet and global surveys. Facet measures such as the Job Descriptive Index (JDI; Smith, Kendall, & Hulin, 1969) and the Minnesota Satisfaction Questionnaire (Weiss, Dawis, England, & Lofquist, 1967) treat satisfaction as a multidimensional construct and allow for the independent measurement of several of these components (e.g., satisfaction with pay or supervision). Facet measures have frequently been used for diagnostic purposes in organizational research and allow for the identification of areas in which employees’ satisfaction can be considered satisfactory or in need of improvement. Alternatively, global measures such as Kunin’s (1955) Faces Scale and the Job in General scale (JIG; Ironson, Smith, Brannick, Gibson, & Paul, 1989) gauge an overall evaluative or affective judgment about one’s job. Global measures of job satisfaction are especially useful in research and applied settings in which overall evaluations of one’s job are of interest.

The multivariate nature of contemporary research on job satisfaction (as well as the popularity of model-testing approaches to its analysis) often necessitates the use of survey instruments composed of many different scales. For instance, a recent meta-analysis of the JDI’s construct validity identified nearly 500 other variables with which one or more of its facets had been correlated (Kinicki, McKee-Ryan, Schriesheim, & Carson, 2002). One result of this trend has been an increase in the length of survey instruments and a concomitant decrease in respondents’ willingness to complete them. As Rogelberg and Luong (1998) observed, employees can feel “oversurveyed,” which likely increases instances of nonresponse (also see Schwarz, Groves, & Schuman, 1998).

Stanton, Balzer, Smith, Parra, and Ironson (2001) created an abridged version of the JDI (the AJDI) in response to this issue, reasoning that reduced-length scales take less time to complete, occupy less space on surveys, and

A previous version of this article was presented at the 18th Annual Society for Industrial and Organizational Psychology Conference, Orlando, Florida. Correspondence concerning this article should be addressed to Steven S. Russell, Personnel Decisions Research Institutes, Suite 1010, 1300 North 17th Street, Arlington, VA 22209; steven.russell@pdri.com.
decrease fatigue on the part of the respondent. In that study, the AJDI successfully preserved both the internal consistency and validity relations of the original scale. Although the JIG was developed by Ironson et al. (1989) as an accompaniment to the full-length JDI, it remains in its original 18-item format. As Reynolds and Richmond (1978) noted, “An omnipresent concern . . . is the efficiency of the measuring instrument. Keep it as brief as possible to do the job needed” (p. 272). Therefore, this article reports on the construction and subsequent validation of the abridged JIG (AJIG) scale, streamlining some of the same analytical techniques used in the creation of the AJDI to present an example of the structured strategy for scale reduction designed and reported by Stanton, Sinar, Balzer, and Smith (2002).

Development of and Subsequent Research Using the JIG Scale

Collecting data from five heterogeneous samples composed of more than 10,000 respondents, Ironson and colleagues (1989) crafted the JIG scale with several goals in mind: to maximize internal consistency, to demonstrate convergent and discriminant validity, and to ensure compatibility with each of the JDI facet scales. After pilot testing a list of 42 very short, evaluative items from a survey of the job satisfaction literature, Ironson et al. relied on conventional scale development techniques (e.g., item-total correlations, principal components analyses) to produce a final scale that yielded alpha coefficients near .90, converged with other measures of global satisfaction while diverging from specific (facet) measures of satisfaction, and retained the familiar JDI format consisting of adjectives and short phrases with a response scale of “yes,” “no,” and “?.”

Researchers have used Ironson et al.’s (1989) scale in many mainstream investigations of the antecedents and consequences of job attitudes (e.g., work stress; Stanton, Balzer, et al., 2001) as well as a variety of unusual applications, including investigations of action-state orientation (Diefendorff, Hall, Lord, & Strean, 2000), attitudes toward drug testing (Mastrangelo & Popovich, 2000), and proneness to job boredom (Kass, Vodanovich, & Callender, 2001). The JIG has also been examined in methodological contexts. Recently, attempts to argue for the use of single-item measures of job satisfaction over multiple-item measures have appeared in the literature (e.g., Nagy, 2002; Wanous, Reichers, & Hudy, 1997). Wanous and colleagues (1997), despite introducing a new technique for estimating the probable minimum reliability of a single item, nevertheless found one-item measures of global job satisfaction to be somewhat inferior to the multi-item JIG. In this article, we designed an abridged version of the JIG to offer the practical advantages of a very brief instrument without sacrificing the psychometric properties of the often-used full-length version.
Overview of the Combinatorial Approach to Scale Reduction

Resources for developing and validating new scales abound (e.g., Anastasi, 1988; Clark & Watson, 1995; Murphy & Davidshofer, 1998), but guidelines for reducing the length of already-existing scales are relatively scarce. Although computer programs have been developed to maximize alpha coefficients among subsets of items for this task (e.g., Flebus, 1990; Thompson, 1990), Stanton and colleagues (2002) pointed out that reduced-length scales must also preserve the known validity relations of the original scale. In other words, strategies based solely on maximizing internal consistency can result in an unnecessarily narrow measurement of constructs. Stanton (2000; Stanton et al., 2002) developed a set of structured techniques for reducing the length of scales while preserving validity relations, including item selection on the basis of item quality indices, professional judgment, and empirical distributions of correlations.

One of the strategies that Stanton et al. (2002) described for choosing an initial set of suitable test items was called the combinatorial approach. This approach to item selection maximizes the covariance between subsets of items and the original scale using a “brute force” optimization procedure. Stanton (2000) developed software that compiles all possible combinations of a user-defined number of items, sorted by magnitude of correlation with a full-length scale score or other criterion (the program is available online at http://www.bgsu.edu/departments/psych/JDI/r_crunch.zip). The resulting list of item subtests—which can be a substantial list with many options—may then be evaluated on the basis of nonstatistical criteria, such as preferences for phrasing or balancing positively and negatively worded items. The sample-bound distributions of correlations produced by this approach, however, necessitate the use of cross-validation techniques with additional samples and without additional items from the full-length scale.

Across three studies, we carefully developed and cross-validated an abridged version of the JIG by following recommendations and procedures from Stanton (2000) and Stanton et al. (2002). In Study 1, we used the combinatorial approach as well as item goodness judgments (i.e., informed decisions regarding each item’s appropriateness for inclusion) to choose among the best configurations of possible JIG subtests. In addition, we tested the equivalence of covariance matrices across datasets including either the full-length or abridged JIG. In Studies 2 and 3, we assessed the psychometric properties of the AJIG in isolation (i.e., without the additional items from the full-length version of the scale) and further examined its relations to other theoretically relevant constructs (e.g., organizational commitment).
Study 1

Method

Participants and procedure. A random sample of U.S. workers, stratified by state, was drawn from a database of 1990 census and social security data. Of approximately 7,000 persons receiving our mailed survey, responses were returned from 1,669 workers (a response rate of nearly 24%). Although this response rate was not particularly high, recent work by Rogelberg et al. (2003) suggests that sampling biases due to nonresponse have little, if any, effect on surveys of job attitudes (e.g., job satisfaction). Forty-five percent of respondents were women, 20% were minorities, and ages ranged from 17 to 80 years ($M = 44.0$, $SD = 11.24$). Surveys were completed anonymously.

Measures. The mailed survey contained the five scales of the full-length JDI (72 items; Balzer et al.’s 1997 revision), the full-length JIG scale (18 items; Ironson et al., 1989), and a 6-item Intentions to Quit scale (ITQ; Parra, 1995). The JDI facet scales, which are not summed to compute an overall, multidimensional index of job satisfaction (Balzer et al., 1997), measure satisfaction with one’s work, pay, opportunities for promotion, supervision, and coworkers. Each scale contains adjectives or short phrases that can be used to describe aspects of one’s job (e.g., “around when needed” of the supervision scale). The JIG scale also contains adjectives or short phrases, but the 18 items refer to one’s “job in general.” For example, the item “worthwhile” captures an overall evaluation of one’s job. At the scale level, raw scores range from 0 to 54, with higher values indicating greater satisfaction. Principal axis factor analysis shows the scale to include a dominant evaluation factor (explaining more than 45% of the total variance) and a much smaller secondary factor composed of four items with the smallest endorsement rates (e.g., “ideal”). The ITQ scale features complete statements rather than adjectives (e.g., “I intend to leave this organization soon”). Standard JDI scoring procedures were used for all scales (i.e., using 0 for “no,” 1 for “?” and 3 for “yes”; see Balzer et al., 1997, for details).

Results and Discussion

Item selection and descriptive statistics. As described earlier, Stanton et al. (2002) suggested several methods by which scale length could be reduced without sacrificing key psychometric properties. We used the combinatorial strategy in conjunction with item goodness judgments to identify the best configuration for our purposes. As a first step, we used Stanton’s (2000) software to produce empirical distributions of correlations between the full-
length scale and sets of items having several different lengths. With a preference to retain a pool of adjectives yielding alpha coefficients of at least .85, we found that a length of 8 items would meet this criterion. Of 43,758 possible combinations (sampling 8 items in any order from the original 18), 751 combinations had correlations with the full scale in excess of $r = .97$ (a bit less than 2%). To choose among these 751 combinations, we relied on three criteria as item goodness indicators: (a) acceptable univariate distributions for all items (i.e., avoidance of heavily skewed or kurtotic items), (b) a relative balance between positively and negatively worded adjectives, and (c) avoidance of content overlap with the JDI scales, which are often used in tandem with the JIG.

About two thirds of the 751 combinations contained the adjective bad, but this item had adverse distributional characteristics relative to other items. In addition, bad appears in another scale of the reduced-length JDI, so we rejected this item and combinations of items that included it. Next, among the remaining top 50 combinations of items, virtually all sets contained the adjectives good and undesirable; given that both possessed good univariate psychometrics, balanced a positively worded adjective with a negatively worded one, and did not appear anywhere in the AJDI, we adopted them. We found the same to be true of items with better than most and disagreeable, and we included these two items as well.

Examining the remaining combinations with these four adjectives led us to find three additional items with relatively frequent occurrence: makes me content, excellent, and enjoyable. These three items, though all positively worded, also exhibited a variety of means and suitable univariate distributions. In the interest of constructing a semantically balanced scale, we wanted to choose one additional negative adjective. The item that correlated most highly with bad (ruled out for its univariate distribution but otherwise a desirable item with respect to preserving the original scale’s covariance structure) was poor ($r = .64$). Although this item was slightly positively skewed and leptokurtic, it did not appear on any of the AJDI scales, and so we adopted it. Our final set of 8 adjectives yielded an alpha coefficient of .87 and correlated strongly with the original scale, $r = .97$. At the scale level, the reduced set of items yielded distribution characteristics comparable to those of the JDI facet scales (skewness statistic = –0.93, kurtosis = –0.10). Table 1 reports item statistics computed for the 8-item AJIG in Studies 1, 2, and 3.

Comparison of covariance matrices. To test the degree to which the pattern of covariance had changed between the two versions of the JIG and the accompanying scales in the survey, we used the AMOS structural equation modeling program to assess the invariance of two covariance matrices representing, on one hand, the relations between the JIG and other measures and, on the other hand, the relations between the AJIG and the other measures. Following the procedure described in Stanton, Sinar, et al. (2001), we used a
Table 1

Descriptive Statistics for Abridged Job in General Scale (Studies 1, 2, and 3)

<table>
<thead>
<tr>
<th>Item</th>
<th>Study 1</th>
<th>Study 2</th>
<th>Study 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>rTT</td>
</tr>
<tr>
<td>Good</td>
<td>2.43</td>
<td>1.10</td>
<td>.71</td>
</tr>
<tr>
<td>Undesirable (R)</td>
<td>2.54</td>
<td>1.03</td>
<td>.65</td>
</tr>
<tr>
<td>Better than most</td>
<td>2.10</td>
<td>1.31</td>
<td>.57</td>
</tr>
<tr>
<td>Disagreeable (R)</td>
<td>2.43</td>
<td>1.09</td>
<td>.59</td>
</tr>
<tr>
<td>Makes me content</td>
<td>1.63</td>
<td>1.39</td>
<td>.61</td>
</tr>
<tr>
<td>Excellent</td>
<td>0.95</td>
<td>1.27</td>
<td>.48</td>
</tr>
<tr>
<td>Enjoyable</td>
<td>2.09</td>
<td>1.28</td>
<td>.74</td>
</tr>
<tr>
<td>Poor (R)</td>
<td>2.54</td>
<td>1.02</td>
<td>.66</td>
</tr>
</tbody>
</table>

Note. rTT is the corrected item-total correlation of each item. Job in General scale items copyright 1989, Bowling Green State University. Please contact first author for permission to use these scales.
multiple independent group comparison to conduct this test. We standardized the JIG and AJIG scores because these had different score ranges (and thus different variances) and thus would not produce comparable variances or covariances in their raw forms. We randomly divided the sample into two nonoverlapping subsamples, one with \(n = 675 \) and one with \(n = 722 \) (see Bollen, 1989; note that some cases were lost due to missing data). Table 2 displays the correlations among measures in these two subsamples: The values above the diagonal were calculated using the JIG scale and the values below the diagonal were calculated using the AJIG scale. The reader will also note that the statistical significance of correlations reported in Table 2 was undoubtedly influenced by this study’s large sample size.

In our baseline model, we fixed all of the covariances among the facets of the JDI and the ITQ scale because we expected the relations between these unchanged scales to remain constant across the two samples. This baseline model allowed intercorrelations involving the JIG (or the AJIG) scale to vary. The baseline model had a nonsignificant chi-square statistic, \(\chi^2(15) = 16.5, \) \(ns \). We then fit a more restrictive model in which the covariances between the JIG and the other scales were fixed across models. The more restrictive model’s chi-square statistic remained nonsignificant, \(\chi^2(21) = 19.3, \) \(ns \), and unsurprisingly, the corresponding chi-square difference test between the two models was also nonsignificant, \(\chi^2(6) = 2.8, \) \(ns \). Note that with nonsignificant chi-squares, both models also had conventional fit statistics (e.g., the goodness-of-fit index, root mean square error of approximation, and the Tucker-Lewis index) reflecting essentially perfect fit. These results suggested that the equality constraint was reasonable and therefore that the AJIG had satisfactorily replicated the covariance patterns of the full-length JIG.

Table 2
Correlations From Two Randomly Drawn Subsamples (Study 1)

<table>
<thead>
<tr>
<th></th>
<th>JIG/AJIG</th>
<th>JDI-W</th>
<th>JDI-P</th>
<th>JDI-Pr</th>
<th>JDI-S</th>
<th>JDI-C</th>
<th>ITQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIG/AJIG</td>
<td>—</td>
<td>.72</td>
<td>.24</td>
<td>.41</td>
<td>.56</td>
<td>.54</td>
<td>–.68</td>
</tr>
<tr>
<td>JDI-work</td>
<td>.66</td>
<td>—</td>
<td>.21</td>
<td>.36</td>
<td>.50</td>
<td>.46</td>
<td>–.56</td>
</tr>
<tr>
<td>JDI-pay</td>
<td>.19</td>
<td>.14</td>
<td>—</td>
<td>.21</td>
<td>.18</td>
<td>.19</td>
<td>–.24</td>
</tr>
<tr>
<td>JDI-promotions</td>
<td>.36</td>
<td>.32</td>
<td>.22</td>
<td>—</td>
<td>.42</td>
<td>.33</td>
<td>–.38</td>
</tr>
<tr>
<td>JDI-supervisor</td>
<td>.53</td>
<td>.44</td>
<td>.17</td>
<td>.43</td>
<td>—</td>
<td>.52</td>
<td>–.42</td>
</tr>
<tr>
<td>JDI-coworkers</td>
<td>.51</td>
<td>.43</td>
<td>.12</td>
<td>.25</td>
<td>.49</td>
<td>—</td>
<td>–.42</td>
</tr>
<tr>
<td>Intentions to quit</td>
<td>–.67</td>
<td>–.54</td>
<td>–.20</td>
<td>–.35</td>
<td>–.50</td>
<td>–.42</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. JIG = Job in General scale; JDI = Job Descriptive Index. Correlations above the diagonal were calculated in a subsample (\(n = 675 \)) that used the full-length JIG scale, whereas correlations below the diagonal were calculated in a subsample (\(n = 722 \)) that used the eight-item abridged JIG scale. All correlations in the matrix were statistically significant, \(p \leq .001 \).
Study 2

The effects of different item contexts (e.g., item stems, other nearby items) on the overall psychometric functioning of scales are well documented (e.g., Knowles, 1988; McFarland, Ryan, & Ellis, 2002; Schmit, Ryan, Stierwalt, & Powell, 1995; Steinberg, 1994; Tourangeau & Rasinski, 1988). Thus, we felt it was important to examine the newly developed AJIG in two additional studies in which the additional items were presented to respondents in the absence of the items that we had discarded from the full-length version. Studies 2 and 3 also allowed us to investigate how the AJIG related to other constructs of theoretical interest: organizational commitment, organizational identification, and withdrawal behaviors.

In a recent meta-analysis, Meyer, Stanley, Herscovitch, and Topolnytsky (2002) found that overall job satisfaction related to both affective (corrected \(r = .65 \)) and normative (corrected \(r = .31 \)) types of organizational commitment. Affective commitment is viewed as an emotional bond to an organization, whereas normative commitment is viewed as one’s perceived obligation to maintain membership in the organization. (A third type of commitment, continuance commitment, reflects one’s calculative weighing of the costs and benefits of remaining in the organization and is examined in Study 3.) Therefore, in addition to examining item-level statistics, we hypothesized a moderate to high positive correlation between the AJIG and a measure of affective commitment as well as a small to moderate positive correlation with a measure of normative commitment.

Organizational identification was also compared to the AJIG. Mael and Ashforth (1992) defined organizational identification as “the perception of oneness with or belongingness to an organization, where the individual defines him or herself in terms of the organization(s) in which he or she is a member” (p. 104). According to their reformulated (1992) theoretical model, satisfaction with the organization is an individual antecedent of identification with that organization. Using a sample of 297 collegiate alumni, Mael and Ashforth found a correlation of \(r = .51 \) between identification and satisfaction with the alma mater; similarly, we hypothesized a moderate to high positive correlation between organizational identification and global job satisfaction as measured by the AJIG.

Method

Participants and procedure. Four Web-based sampling techniques (including electronic mailing lists and advertisements in a weekly e-mail newsletter) and one paper-and-pencil-based sampling technique (research assistants distributed surveys to full-time, nonmanagerial employed persons)
were combined to achieve a final sample size of 250 full-time, nonmanagerial employees. The mean age for the sample was 35 years.

Measures. In addition to the abridged JIG scale, two types of organizational commitment were measured using Allen and Meyer’s (1990) eight-item scales: affective ($\alpha = .85$; “I would be very happy to spend the rest of my career with this organization”) and normative ($\alpha = .65$; “I was taught to believe in the value of remaining loyal to one organization”). We measured organizational identification ($\alpha = .84$; “When I talk about my organization, I usually say we rather than they”) with the first five items of Mael and Ashforth’s (1992) six-item scale. These same five items demonstrated high internal consistency reliability (alpha coefficients ranging from .83 to .89) in several previous studies (Mael, 1989). The organizational commitment and identification instruments employed five-point rating scales.

Results and Discussion

The internal consistency reliability for the AJIG was .85, thus reaching our previously set standard for the scale. Using the central approach to estimating confidence intervals around a reliability coefficient estimate, the obtained 95% confidence interval was [.82, .87] (see Fan & Thompson, 2001, p. 524). Table 1 also reports item statistics for this study; item-level statistics were fairly consistent across all studies. For instance, good remained the most frequently endorsed of the positively worded items, and items undesirable and poor remained the most frequently endorsed negatively worded items (after reverse coding). Item-total correlations ranged from $r_{IT} = .47$ to $r_{IT} = .71$, and items retained similar distribution characteristics (e.g., seven of eight items with small negative skews).

Relations between the AJIG scale and measures of other variables provided evidence of the new scale’s construct validity. Specifically, the AJIG correlated with affective commitment, $r = .48$ ($p < .05$) and with normative commitment, $r = .21$ ($p < .05$). The AJIG also correlated strongly with organizational identification, $r = .47$ ($p < .05$). In other words, feelings of global job satisfaction corresponded to commitment to and identification with one’s organization. We interpreted the results of Study 2 as lending considerable support to both (a) the success of our scale reduction process and (b) the validity of its product, the AJIG, for research in the field of employee attitudes.

Study 3

In Study 3, we collected data with two primary aims: (a) further investigation of the AJIG’s theoretical linkages to organizational commitment and
(b) preliminary investigation of its theoretical linkage to withdrawal behaviors, such as searching for a new job. To extend our examination of the satisfaction-commitment relation beyond Study 2, we included measures of both affective and continuance commitment; this allowed us not only a chance to replicate findings from Study 2 but also a chance to compare how the AJIG related to a different facet of commitment. As described earlier, continuance commitment reflects individuals’ capacity to entertain “side bets” about their current employment; this emphasis on cognition may explain the corrected correlation of only \(r = -0.07 \) between overall job satisfaction and continuance commitment reported in the Meyer et al. (2002) meta-analysis. Therefore, we hypothesized a small, negative correlation between continuance commitment and global job satisfaction as measured by the AJIG.

Furthermore, several of the most influential models of turnover (e.g., Griffeth, Hom, & Gaertner, 2000; Lee & Mitchell, 1994; Mobley, 1977) posit either direct or indirect causal links between job satisfaction and withdrawal behaviors. Mobley (1977), for example, suggested that dissatisfaction with one’s job leads to thoughts of quitting. Once dissatisfied with one’s job, a person evaluates the utility of searching for an alternative job. If searching for an alternative job is viewed as a worthwhile activity, a person forms an intention to do so, which is followed by the actual searching behavior. Accordingly, we conducted Study 3 with the expectation that job satisfaction would inversely relate to both concurrent and subsequent job search behaviors. Thus, we conducted Study 3 in two phases to investigate both concurrent and predictive relations between satisfaction and self-reported withdrawal behaviors.

Method

Participants and procedure. Participants for Study 3 were recruited from the field of information technology (IT) using Internet sampling methods (including electronic mailing lists and banner advertisements). A total of 164 participants (72% male) completed the first online survey (Time 1). The average age of the participants was 46 years. Participants from the first phase of the study were sent an e-mail message 6 weeks after filling out the baseline survey asking them to complete the second survey. Of the 164 participants from Time 1, 110 (67% response rate) respondents also participated in the second phase of this study (Time 2).

Measures. Along with the eight-item AJIG, organizational commitment was assessed using Allen and Meyer’s (1990) eight-item scales for affective (\(\alpha = .86 \)) and continuance (\(\alpha = .84 \); “It would be too costly for me to leave my organization now”) commitment. Job search behaviors were assessed by asking participants to indicate how often they had engaged in any of six prepara-
tory (“talked with friends or relatives about possible job leads”) or six active (“had a job interview with a prospective employer”) job search behaviors in the past 6 months. Our distinction between preparatory and active job search behaviors followed the suggestions of previous research (see Blau, 1993; Kanfer & Hulin, 1985; Vinokur & Caplan, 1987).

Results and Discussion

The internal consistency reliability for the AJIG was .87 [.83, .90], again reaching the standard we had set for the reduced length scale. Item-level statistics for Study 3 were consistent with the previous two studies (see Table 1). For example, good remained the most frequently endorsed of the positively worded items, and items undesirable and poor remained the most frequently endorsed negatively worded items (after reverse coding). Item-total correlations also remained in the .40 to .70 range. Undesirable and poor displayed more strongly skewed and leptokurtic distributions in this sample than in previous samples.

Table 3 reports means, standard deviations, and intercorrelations for all variables. As expected, the AJIG again correlated strongly with affective organizational commitment, $r = .59$ ($p < .05$). Also consistent with Meyer

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>AJIG</th>
<th>Prep1</th>
<th>Act1</th>
<th>Prep2</th>
<th>Act2</th>
<th>AC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJIG</td>
<td>17.52</td>
<td>6.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparatory job search behavior, Time 1 (Prep1)</td>
<td>6.99</td>
<td>4.45</td>
<td>-0.21*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active job search behavior, Time 1 (Act1)</td>
<td>4.25</td>
<td>5.01</td>
<td>-0.19*</td>
<td>0.65**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparatory job search behavior, Time 2 (Prep2)</td>
<td>7.34</td>
<td>4.79</td>
<td>-0.16</td>
<td>0.72**</td>
<td>0.55**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active job search behavior, Time 2 (Act2)</td>
<td>4.17</td>
<td>4.95</td>
<td>-0.18</td>
<td>0.60**</td>
<td>0.82**</td>
<td>0.71**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective commitment (AC)</td>
<td>22.71</td>
<td>7.25</td>
<td>0.59*</td>
<td>-0.24**</td>
<td>-0.15</td>
<td>-0.24*</td>
<td>-0.26**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuance commitment (CC)</td>
<td>19.52</td>
<td>6.44</td>
<td>-0.24**</td>
<td>0.12</td>
<td>0.16</td>
<td>0.09</td>
<td>0.33**</td>
<td>-0.04</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05, two-tailed. **p < .01, two-tailed.
et al.’s (2002) meta-analysis, we found a small, negative correlation between overall job satisfaction and continuance organizational commitment, \(r = -0.24 \) (\(p < .05 \)). Also expected were the negative concurrent (Time 1) relations found between job satisfaction and preparatory (\(r = -0.21 \), \(p < .05 \)) and active (\(r = -0.19 \), \(p < .05 \)) job search. Low job satisfaction was accompanied by concurrent instances of both preparatory and active job search. The AJIG did not, however, predict future job search behaviors as suggested by non-significant correlations with Time 2 preparatory and active job search behaviors. Although in the hypothesized direction, these latter findings could be the result of a mismatch in specificity between a measure of general job satisfaction and specific job search behaviors. According to Fishbein and Ajzen (1975), specific behaviors such as job search behaviors are best predicted by specific attitudes. Because the AJIG scale does not specifically map onto job search behaviors, our measure did not reliably predict such behaviors; the JDI’s facet scales may be a better fit for such an investigation. Nevertheless, we believe that this final study lends additional credibility to the AJIG scale as a valid (and brief) measure of overall job satisfaction.

General Discussion

This article presents a series of studies aimed at using a structured strategy for scale reduction and subsequently shows validity evidence for the new scale. The combinatorial approach developed by Stanton (2000) was applied in this case to preserve the known validity relations between a popular measure of overall job satisfaction and measures of other theoretically pertinent constructs. By relying on a technique that maximizes covariance with the original scale and fine-tuning the reduced pool of items using rational judgment, we trimmed the JIG scale to only eight items with minimal impact on its reliability or validity. This technique is preferred over strategies relying solely on maximizing an abridged scale’s internal consistency reliability. The AJIG scale nevertheless yielded alpha coefficients no smaller than .85, appreciably larger than the proposed minimum estimated reliabilities for comparable single-item measures (ranging from .45 to .69, depending on certain empirical and theoretical assumptions; see Wanous et al., 1997, for more details).

Our examination of the covariance matrices across data sets including either the full-length or abridged JIG in Study 1 verified that the abridging process had not harmed the JIG scale’s relations with the JDI and an Intent to Quit scale. Using a stratified sample of U.S. workers, we found that a fully constrained model did not lead to a statistically significant decrement in model fit. Thus, within the context of this large sample, the reduced-length JIG scale could replace the full-length JIG scale without distorting relations with intentions to quit or any of the five facets of job satisfaction. The rela-
tions between the AJIG scale and many other constructs of theoretical im-
port have not, however, been examined. Other variables that would pro-
vide additional validity evidence include job characteristics, leader relations,
work stress, life satisfaction, organizational citizenship behaviors, and job
performance.

Across the three reported studies, item-level statistics of the AJIG varied
only slightly from sample to sample. More important, the scale-level dis-
tribution characteristics of AJIG scores in Study 1 replicated the pattern of
slight negative skewness found in most of the JDI facet scales (see Stanton,
Sinar, et al., 2001). In addition, the AJIG related in predictable ways to mea-
sures of organizational commitment, identification with the organization,
and withdrawal behaviors. Consistent with previous findings from the satis-
faction literature, high levels of overall job satisfaction were accompanied by
affective and normative commitment to and identification with the organiza-
tion and a smaller likelihood of both continuance commitment and job search
behaviors. Because these latter results were derived largely from Web-based
sampling methods, caution should be heeded before the equivalence of
validity relations can be presumed in on-site contexts.

As a result of condensing the JIG scale by more than 50%, the abridged
JIG scale offers both practitioners and researchers a way to efficiently and
accurately measure workers’ overall evaluations of their jobs. Both the AJIG
and the structured scale reduction procedures used to derive it preserve the
desirable psychometric properties of the original scale while reducing the
time and space required to measure a given construct. Thus, we were able to
meet the same high standards set by Ironson et al. (1989) in constructing the
full-length version: internal consistency, validity, and compatibility with the
JDI family of scales.

References
ers' manual for the Job Descriptive Index (JDI, 1997 revision) and the Job in General scales.
Bowling Green, OH: Bowling Green State University.
turnover. Personnel Psychology, 46, 313-331.
ment. Psychological Assessment, 7, 309-319.
struct validity of a revised measure and its relationship to work-related variables. Journal of
Applied Psychology, 85, 250-263.

